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Reversible self-organisation of a
sheared suspension

Arsène Chemin

Flows at low Reynolds numbers are driven by time reversible equations. However, experiments
showed that sheared suspensions of micro-scale particles in a viscous fluid do not always exhibit
a reversible behaviour: the particles do not come back to their initial position after a back-
and-forth movement. This study provides some possible answers to this paradox comparing
experimental data to computer model results. This behaviour can be explained by irreversible
short range interactions between particles and depends largely on the shearing amplitude. For
low amplitudes, the system first self-organises in a stable configuration. Such a configuration
minimises particles interactions during the sheared movement. Therefore the system becomes
totally reversible. When the shearing amplitude increases the relative movement between
particles increases as well and so does the probability of interaction. Above a critical amplitude,
the system cannot reach any stable configuration. It becomes chaotic and does not self-organise.
It exhibits a phase transition dynamics.

1. Introduction

About a century ago, G.I Taylor [1] showed that the mo-
tion of a fluid can be reversible. If a viscous fluid is placed
between two concentric cylinders, the rotation of the inner
cylinder will shear the liquid. However, if it is rotated in
the other direction, the motion of the liquid will be ex-
actly inversed. Thus, if a coloured drop is placed in this
liquid, the first rotation will spread the drop. Yet when
the cylinder is rotated in the other direction, the coloured
drop will reform (see Figure 1).
This spectacular and non-intuitive observation can be

explained by laws of motion. Hydrodynamics motion is
driven by the non-linear and irreversible Navier-Stokes
equation. Consequently a dash of milk will never reform.
However, if the liquid is viscous enough, this equation is
simplified and becomes reversible. Thus, for an incom-
pressible fluid at low Reynolds numbers (Re = ρUL

η << 1)
Stokes equations become:

∇.v = 0

−∇P + η4v = 0
where P is the pressure, η the shear viscosity and v the
liquid velocity. At the boundary, the liquid velocity is
equal to the wall velocity. These equations give reversible
solutions and a reversal of the boundary motion would
immediately invert the flow velocity in every points. Hence
a viscous liquid sheared between two concentric cylinder
is a reversible system.

Based on this result, a suspension of macroscopic
particles in such a fluid should a priori be reversible.
After a back-and-forth rotation of the inner cylinder,
all the particles should return to their initial position.
However, in 2010, D. G. Pine et al [2] showed that
a slowly sheared suspension of solid particles at low
Reynolds number have an irreversible behaviour if the
shearing amplitude exceeds a critical value. There is
a symmetry breaking that occurs through a critical
phenomenon. This cannot be explained by the study
of only one particle but is caused by particles interactions.

This study deals with the amplitude of these micro-

Fig. 1 Pictures of the Taylor experiment on the reversibil-
ity at low Reynolds numbers. (a) Pigments are placed in
a viscous fluid between two concentric cylinders. (b) The
inner cylinder is slowly rotated 4 turns forwards. (c) The
inner cylinder rotated back 4 turns. The pigments return
to their initial position. The flow is reversible. Pictures
from "Low-Reynolds-Number Flows" lecture by National
Science Foundation [1].
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Fig. 2 (a) Setup for a viscous suspension under an oscil-
latory shear in a Couette geometry for a shearing ampli-
tude γ. (b) Picture of suspended particles in a laser sheet
lighting the gap between the two cylinders.

scopic interactions and how a statistical description of
these interactions can explain such a critical transition.
The first part of this paper exposes the phase transi-
tion behaviour of a micro-scale particles suspension in a
sheared Couette flow at low Reynolds number. The sec-
ond part of this article explains a simple numerical model
of the phenomenon. This model suggests an amplitude for
particles interactions and a physical interpretation of this
phase transition behaviour.

2. Experiments

Design. In order to study the behaviour of sheared
suspension, UCON™ oil and micro-scale polystyrene
particles are mixed together. The suspension is placed
between two concentric cylinders separated by a gap
δ = 5 mm. The inner cylinder has a radius R = 50 mm.
The particles diameter is 100 µm and the volume ratio
(Vparticles/Vtotal) is fixed at 0.2. In order to shear the
fluid, the inner cylinder is subsequently rotated by an
angle Θ� 2π. This movement corresponds to a shearing
amplitude γ = RΘ/δ. The rotation speed is chosen
in accordance with the UCON™ oil viscosity (about
15 Pa.s at 293 K) to keep the Reynolds number very
low (Re < 10−4). Because the density ratio between
polystyrene and UCON™ oil is 0.93 at 293 K, sedimen-
tation is extremely slow: about 0.05 µm.s−1. During the
experiments, the minimal displacement observed during
1 s is 0.3 µm. Therefore any movements induced by sed-
imentation will be neglected. Before each measurement,
the inner cylinder is quickly rotated in one direction
during about 50 turns in order to randomise the particles
distribution. During the measurement, it is slowly and
precisely moved using a stepper motor (ORIENTAL
MOTOR U.S.A. Corp., model AR98MAD-H100-3).
This motor as an angular resolution of 0.0036 ° by
step yielding a precision on the shearing amplitude:
∆γ = 6.10−4. Each time the inner cylinder comes
back to its initial position, the particles displacement is
analysed to evaluate the reversibility. For that purpose,
the suspension is lit up with a vertical laser sheet in order
to observe the particles displacement. The area is filmed
with a CCD camera (Thorlabs, model DCU224C, 1280
x 1024 Pixels),(See Figure 2). On these pictures a pixel

corresponds to about 5 µm. The camera is programmed
to take a picture each time the inner cylinder comes back
to its initial position. The cylinder makes between 40
and 100 back-and-forth movements – called a cycle – for
each shearing amplitude. Thus, a stroboscopic film of the
system is obtained. This measurement is done for five
different shearing amplitudes: γ = 0.25, 0.50, 0.75, 1.50
and 2.50.

In order to characterise the average particles displace-
ment, two overlaps are calculated.
The first one, Oγ(n), compares each picture to the pre-
vious one. It represents the decorrelation between two
consecutive images. This characterises the average ampli-
tude of the particles displacement after one cycle. It is
defined by:

Oγ(n) = 1
Zγ

√√√√ ∑
pixels(xi,yi)

[
In(xi, yi)
Mn

− In−1(xi, yi)
Mn−1

]2

In(xi, yi) is the intensity of the (xi, yi) pixel of the picture
n. Mn is the average intensity of the n picture correct-
ing global intensity fluctuations. Zγ is a normalisation
coefficient. It corresponds to the maximal decorrelation
that could be observed on this measurement. It is cal-
culated taking different images of the system in random
configurations and corresponds to the average decorrela-
tion between these pictures.
The second overlap, Ōγ(n), compares each picture to a
reference picture. It represents the decorrelation between
an image n (for n ≥ 10) and image 10 – when the system
is in a permanent regime – and characterises the average
amplitude of the particles accumulated displacement. It
is defined by:

Ōγ(n) = 1
Zγ

√√√√ ∑
pixels(xi,yi)

[
In(xi, yi)
Mn

− I10(xi, yi)
M10

]2

The smaller these quantities the more similar the pic-
tures. That is to say, the particles return to their previous
positions. On the contrary, when particles do not return
to their previous positions, these quantities tend to 1.

Results & Phase Transition. For the two highest
amplitudes (γ = 1.50 and 2.50), the behaviour of the
system is the same (See Figure 3 (a)). Oγ(n) fluctuates
widely: between 0.3 and 0.6 for γ = 1.50 and between 0.5
and 0.7 for γ = 2.50. See 3 (a) and (c). After each cycle
the configuration of the particles changes: every particles
position changes. Ōγ(n) increases and saturates around
0.9 within 20 cycles (See Figure 3 (b)). So after 20 cycles,
the system is in a complete different configuration.

For these amplitudes, the average particles displace-
ment is estimated by PIV around 4 µm per cycle (See 4
(b)). This displacement is not organised. A PIV done
between the cycle 30 and 40 for the shearing amplitude
γ = 1.50 shows that the particles go in every direction
(See 4 (a)). This measurement is done on 10 cycles in
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Fig. 3 (a) Overlaps between the picture of the system taken at the cycle n and a picture taken at the
cycle (n− 1). (b) Overlaps between the picture taken at the cycle n and the picture taken at the cycle
10. (c) Average overlap between consecutive pictures for different shearing amplitudes. (d) Overlaps
for the amplitude γ = 0.75 between a picture taken cycle n and the picture taken at the cycle 10 and
between a picture taken at the cycle n and a picture taken at the cycle n − 1. The system switches
between two configurations (α) and (β). (e) Position of some particles in the configuration (α) in black
and in the configuration (β) in red.
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order to accumulate enough displacement.

For the two lowest amplitudes (γ = 0.25 and 0.50),
Oγ(n) is much lower and more stable. It fluctuates
between 0 and 0.3 during the first 20 cycles and then
between 0 and 0.09 (See figure 3 (a) and (c)).However
Oγ(n) is not zero: a slight movement is observed but its
average amplitude estimated by PIV is only about 0.4 µm
per cycle (See 4).
After 30 cycles, Ōγ(n) remains low as well (below 0.2)
(See Figure 3 (b)). It is not zero because of the slight
movement observed previously which is accumulated over
30 cycles.
Yet, it does not increase more than 0.2 because this
movement amplitude is too low to mix the particles
positions. The particles only move around their initial
positions. The global configuration does not change:
it is stable. However, during the first cycles, Oγ(n) is
much higher. For γ = 0.25, O0.25(n) starts at 0.15 and
decreases below 0.05 after the cycle 4. During the first
4 cycles the system configuration changes and organises
itself in order to reach a stable configuration, that is to
say a configuration in which the system is reversible. For
γ = 0.50, the transition is less obvious. However, during
the first 15 cycles, O0.50(n) fluctuates more than after
the cycle 16 with amplitude variations decreasing from
0.3 to 0.1. The system takes more time to reach a stable
configuration.

These measurements are consistent with the Pine et al.
observations [2]. A cyclically sheared suspension at low
Reynolds numbers presents a phase transition. The na-
ture of the system depends on the shear stress amplitude
and presents a critical amplitude. More measurements
have to be done in order to completely characterize this
phase transition. Below this critical amplitude the system
reaches a stable and reversible configuration. The average
movement of particles is too low to change the system
configuration. After the critical amplitude, the average
movement is too high for the system to find any stable
configuration : the system is chaotic.

Phase Transition Nature. The shearing amplitude
γ = 0.75 presents a threshold. During the first 15 cycles,
the system organises itself the same way as it does for
γ = 0.50 (See figure 3 (a) and (d)). However Oγ(n) peaks
between cycles 30 and 31, 40 and 41, 69 and 70, 77 and
78: each time the system appears to be in a different con-
figuration. This observation is correlated with Ō0.75(n)
that increases from 0.05 to 0.18 (See figure 3 (c) and (d)).
The two different values of Ō0.75(n) correspond to two
different configurations α and β (See Figure 3 (d)).
Although perfect synchronisation with the camera was
ensured, this is probably a measuring error. For instance
the motor could miss a step in the first part of a cycle.
This would shift the whole rotation during several cycles.
Then, if the motor misses another step in the second part
of a cycle, this would shift the whole rotation back.

However, an interesting physical explanation could be
proposed. After the first 10 cycles, the system could
reach a stable configuration α. Then between cycles 30
and 31, the system would change its configuration to
reach another stable configuration β and would remain
in this configuration during 10 cycles. After this switch,
the decorrelation between two following cycles would
drop back but the decorrelation with the cycle 10 (See
Figure 3 (d)) in the configuration α would remain high.
Between cycles 30 and 31, the system would change
its configuration again and return in the configuration
α. Thus the decorrelation with the image 10 would
decrease. The fact that the system remains for longer
in the α configuration than in the β configuration could
indicate that the α configuration is more stable than the
β configuration.

Thus, the movement amplitude could be high enough to
create short-range-interaction instabilities. These insta-
bilities would make the system change its configuration.
The life time of these configurations being different, they
could have different degrees of stability. Such an observa-
tion implies that the system follows at least a second order
phase transition which has never been observed. However,
this observation was done on one single experiment. It
is not enough to conclude. It would be very interesting
to study the existence of these metastable configurations.
The threshold could be statistically interpreted as a brutal
evolution in both the number and the stability of reachable

0.25 1.50

Fig. 4 (a) PIV between the pictures of the cycles 30 and
40 for the shearing amplitude γ = 0.25 and γ = 1.50.
(b) Average movement amplitude between two consecu-
tive cycles determined by PIV from the cycle 17 to 25 for
the five different shearing amplitude.
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distributions.

3. Numerical Model

Model. Based on a model developed by D.J. Pine et al.
[2], this experimental system is simulated as a sheared
flow between two planar boundaries. One of the plans
moves in the X direction creating a simple shear flow
with uniform velocity gradiant. The particles have a
diameter of 100 µm and the volume ratio is set to 0.2
just as the experimental setup. The dimension of the
simulated box is 5 mm by side and is adapted in order
to simulate 500 particles. The particles movement is
assumed to be equal to the movement of the fluid because
of the low Reynolds numbers. The speed gradient is
in the Y direction and the Z direction represents the
height (See Figure 5 (a)). The boundary conditions in
the X direction are periodical while the box’s walls are
impenetrable in the other directions.

At every step of the simulation, each particle moves
between 0 and 100 µm according to speed gradient
evaluated at its position. The value of the maximum step
movement – 100 µm – has to remain small compared
to the distance between particles. If two particles are
in contact, their positions are randomly redistributed
in a 100 µm diameter sphere around their position.
Indeed interactions cannot be coded by elastic chocks
or any other reversible interactions. If they were, all
the process would always be reversible regardless of the
amplitude. The model needs to introduce irreversibility.
Thus randomly redistributing the particles in a 100 µm
diameter sphere is a simple way to code 100 µm range
irreversible interactions. This procedure is iterated
until the maximum shearing amplitude is reached. This
amplitude corresponds to the experimental shearing
amplitude γ. Then the movement is reversed in order to
complete the cycle. This cycle is repeated 100 times for
different cumulated amplitudes γ = 0.25, 0.50, 0.63, 0.70,
0.82, 0.88 and 1.50.

Results. Figure 5 (c) presents the number of interacting
particles for two different amplitudes γ = 0.25 and 1.50.
This number is calculated at each step of the algorithm
and corresponds to the number of moving particles. Hence
it is naturally linked to overlap notion presented in the ex-
perimental part. At the beginning each simulation starts
with a random distribution where about 200 particles are
interacting. For the lowest amplitude γ = 0.25 the system
self-organises within 10 cycles. The number of interacting
particles drops to zero during an entire cycle (See Figure 5
(c)). From this point the system is completely reversible.
It is in a stable configuration and no more particles are in-
teracting despite the sheared movement. For the highest
amplitudes γ = 1.50 , the system does not self-organise
and it cannot find any stable configuration. There are
always interactions between particles.

The Figure 5 (d) presents the average number of
interacting particles after 20 cycles for different shearing
amplitudes from 0.25 to 1.50. For amplitudes lower
than γ = 0.70 this number is zero. Within 20 cycles,

the systems self-organise themselves and become totally
reversible. On the contrary, for higher amplitudes, the
number of interacting particles never reaches zero and
increases with the amplitude. The system is irreversible.

These results match the experimental data. There is a
critical amplitude that occurs around the same amplitude :
γ = 0.70. Thus it seems that the amplitude of interaction
is relevant. The complex interactions between particles
that lead to irreversibility have an amplitude smaller than

Cycle number

Shearing amplitude γ

0.25
1.50

Fig. 5 (a) Initial random distribution of particles, inter-
acting particles in red, non-interacting particles in blue.
(b) Organised and reversible distribution of particles. (c)
Number of interacting particles at every algorithm step
over 50 cycles for shearing amplitudes of 0.25 and 1.50.
(d) Average number of interacting particles after 20 cy-
cles for different shearing amplitudes from 0.25 to 1.50.
For shearing amplitudes lower than 0.70, the number of
interacting particles goes to zero and the system reaches
a totally reversible configuration. For higher amplitude
the system never reaches a reversible configuration.
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100 µm. The experimental behaviour around the critical
amplitude – switching between two configurations – can-
not be obtained with the model. Indeed, in the model,
as soon as the system is in a reversible configuration, no
perturbations can make it change.
This model mainly reproduces the experiment be-

haviour and hints towards an interpretation. Thus, in the
experimental setup, the particles are probably interacting
through the liquid with a amplitude smaller than 100 µm.
However, this model uses random displacements as inter-
actions. This does not correspond to real interactions.
The question of the relevance of this model remains open.

4. Conclusion

Hydrodynamics equations imply that a system at low
Reynolds numbers should always be time reversible.
However, as observed by D. J. Pine et al [2], this ex-
periment shows that a cyclic sheared suspension at low
Reynolds numbers is not always reversible. The system
presents a phase transition behaviour with a threshold in
amplitudes. The value of the critical amplitude depends
on characteristics such as density of particles.

When the system is sheared, the particles move be-
cause of the global reversible flow. Yet, if particles are
close enough, they also interact together by short range
interactions – contact or induced local flow – and move
relatively to one another. The system is no longueur
deterministic but has a stochastic behaviour. The
numerical model indicates that these interactions have
an amplitude lower than the particles diameter. At the
beginning the particles distribution is random. Because
of the shearing some particles become close enough to
interact which leads to changes of configuration after
each cycle. For shearing amplitudes lower than a critical
amplitude γ0, these changes bring the system in a stable
configuration. In such a configuration the particles are
organised in a way that minimises the interactions during
a cycle. They only move because of the sheared flow.
Thus, the system is reversible. For shearing amplitudes
higher than γ0, the particles movement during a cycle is
significant enough to prevent any stable configuration.
The system does not reach any organisation that avoids
short range interactions during a whole cycle. Indeed,
increasing the shearing amplitude increases the particles
relative movement as well as the probability of short
range interactions. Thus the particles interact and the
system is not reversible. This dynamics implies that the
critical amplitude increases with the average distance
between particles, when the particles density decreases.
Indeed increasing the average distance between particles
reduces the probability of short-range interactions and
creates stable configurations for higher amplitudes. This
observation was done by D. J. Pine et al [2].

Our study could have revealed a new phenomenon. For
an amplitude just below the critical amplitude γ0, the sys-
tem seems to switch between different stable configura-
tions. However, more observations of this kind have to be
done in order to conclude. It would be very interesting to

study the existence of these metastable configurations.
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